Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guanidinium tetrabromidomercurate(II)

Hiromitsu Terao, ${ }^{\text {a }}$ Thorsten M. Gesing, ${ }^{\text {b }}$ Hideta Ishihara, ${ }^{\text {c }}$ Yoshihiro Furukawa ${ }^{\text {d }}$ and B. Thimme Gowda ${ }^{\text {e }}$
${ }^{\text {a }}$ Faculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjimacho, Tokushima 770-8502, Japan, ${ }^{\mathbf{b}}$ FB05 Kristallographie, Universität Bremen, Klagenfurther Strasse, 28359 Bremen, Germany, ${ }^{\text {c }}$ Faculty of Culture and Education, Saga University, Saga 840-8502, Japan, ${ }^{\text {d Graduate School of Education, Hiroshima }}$ University, Higashi-Hiroshima 739-8524, Japan, and ${ }^{\text {e }}$ Department of Chemistry,
Mangalore University, Mangalagangotri 574 199, Mangalore, India
Correspondence e-mail: gowdabt@yahoo.com

Received 17 February 2009; accepted 19 February 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.012 \AA$; R factor $=0.030 ; w R$ factor $=0.069 ;$ data-to-parameter ratio $=17.2$.

The Hg atoms in the crystal structure of the title compound, $\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{HgBr}_{4}\right]$, are tetrahedrally coordinated by four Br atoms and the resulting $\left[\mathrm{HgBr}_{4}\right]^{2-}$ tetrahedral ions are linked to the $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]^{+}$ions by bromine-hydrogen bonds, forming a three-dimensional network. In the structure, the anions are located on special positions. The two different $\mathrm{Hg} \cdots \mathrm{Br}$ distances of 2.664 (1) and 2.559 (1) \AA observed in the tetrabromidomercurate unit are due to the connection of Br atoms to different number of H atoms.

Related literature

For the ability of the guanidinium ion to make hydrogen bonds and its unique planar shape, see: Terao et al. (2000). For related literature, see: Ishihara et al. (2002); Furukawa et al. (2005)

Experimental

Crystal data

$\left(\mathrm{CH}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{HgBr}_{4}\right]$
$M_{r}=640.41$
Monoclinic, $C 2 / c$

$$
\begin{aligned}
& a=10.035(2) \AA \\
& b=11.164(2) \AA \\
& c=13.358(3) \AA
\end{aligned}
$$

$\beta=111.67(3)^{\circ}$
$V=1390.7(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Stoe IPDS-I diffractometer
Absorption correction: none 9651 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.069$
$S=0.90$
1361 reflections
79 parameters
6 restraints

$$
\mu=22.53 \mathrm{~mm}^{-1}
$$

$T=298 \mathrm{~K}$
$0.09 \times 0.09 \times 0.09 \mathrm{~mm}$

1361 independent reflections 982 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.093$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.71 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.03$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{2}{ }^{\mathrm{i}}$	$0.87(9)$	$3.03(4)$	$3.845(8)$	$158(9)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Br}^{\text {ii }}$	$0.87(9)$	$2.77(6)$	$3.512(7)$	$144(8)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.87(9)$	$2.72(4)$	$3.541(7)$	$159(8)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Br}^{\mathrm{i}}$	$0.87(9)$	$2.74(4)$	$3.535(7)$	$153(8)$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{Br}^{\mathrm{iv}}$	$0.87(9)$	$3.05(10)$	$3.505(8)$	$115(8)$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{Br}^{\mathrm{iii}}$	$0.87(9)$	$2.98(8)$	$3.667(9)$	$137(9)$
Symmetry codes:	(i) $-x+1, y,-z+\frac{1}{2} ;$	(ii)	$-x+1,-y+2,-z+1 ; \quad$ (iii)	
$-x+\frac{1}{2},-y+\frac{3}{2},-z+1 ;$ (iv) $x,-y+2, z+\frac{1}{2}$.				

Data collection: EXPOSE (Stoe \& Cie, 1999); cell refinement: CELL (Stoe \& Cie, 1999); data reduction: XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: SHELXL93 (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2874).

References

Bruker (2003). XPREP. Bruker AXS GmbH, Karlsruhe, Germany.
Crystal Impact (2008). DIAMOND. Crystal Impact GmbH, Bonn, Germany.
Furukawa, Y., Terao, H., Ishihara, H., Gesing, T. M. \& Buhl, J.-C. (2005). Hyperfine Interactions, 159, 143-148.
Ishihara, H., Hatano, N., Horiuchi, K. \& Terao, H. (2002). Z. Naturforsch. Teil A, 57, 343-347.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (1999). EXPOSE and CELL. Stoe \& Cie GmbH, Darmstadt, Germany.
Terao, H., Hashimoto, M., Hashimoto, A. \& Furukawa, Y. (2000). Z. Naturforsch. Teil A, 55, 230-236.

supplementary materials

Guanidinium tetrabromidomercurate(II)

H. Terao, T. M. Gesing, H. Ishihara, Y. Furukawa and B. T. Gowda

Comment

The guanidium ion, $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]^{+}$is interesting due to its ability of making hydrogen bonds and its unique planar shape (Terao et al., 2000). Further, the guanidium ions tend to undergo reorientation motions about their (pseudo) C_{3} axes in the crystals. Due to the soft nature of the Hg atom amenable to polarization, the Hg -halogen bonds are sensitive to the intermolecular interactions such as hydrogen bonding (Ishihara et al., 2002). This was evident in the halogen NQR of the Hg compounds in which the resonance lines are widely spread in frequency (Furukawa et al., 2005). Thus we are interested in studying the structure and bonding in this class of compounds. As a part of our study, we report herein the crystal structure of Guanidinium tetrabromidomercurate(II). In the structure, mercury atoms are tetrahedrally coordinated by four bromine atoms and the resulting HgBr_{4} tetrahedra are interconnected to the $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]^{+}$ions by bromine-hydrogen bonds (Fig. 1) forming a three-dimensional network. In the tetrabromidomercurate unit, two different $\mathrm{Hg}-\mathrm{Br}$ distances were observed: $\mathrm{Hg}-\mathrm{Br} 1=2.664$ (1) \AA and $\mathrm{Hg}-\mathrm{Br} 2=2.559$ (1) \AA. The shorter distance of the latter is due to its connection with two hydrogen atoms, whereas the Br 1 is connected to four different hydrogen atoms, which elongate the $\mathrm{Hg} — \mathrm{Br}$ bond (Fig.2). The $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}$ moity (Fig. 3) itself is planar where the $\mathrm{N}-\mathrm{H}$ bonds are somewhat elongated (1.01 (2) \AA) to form the network bonds to the bromine atoms of the HgBr_{4} tetrahedra.

Experimental

Guanidinium tetrabromidomercurate(II) was prepared by slow concentration of methanolic solution containing mercuric bromide (0.01 mole) and guanidium bromide (0.02 mole) in 1:2 molar ratio. The purity of the compound was checked by elemental analysis and characterized by its NMR and NQR spectra (Furukawa et al., 2005). The single crystals used in X-ray diffraction studies were grown in methanolic solution by a slow evaporation at room temperature.

Refinement

The N-H distances were restrained to 0.87 (1) \AA and the coordinates of the H atoms were refined with isotropic displacement parameters set to 1.2 times of the $U_{\text {eq }}$ of the parent atom.

Figures

Fig. 1. Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

supplementary materials

Fig. 2. : Connection scheme of the $\mathrm{HgBr}_{4} 2^{-}$tetrahedra with the $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]^{+}$ions.

Fig. 3. : The planar $\left[\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3}\right]^{+}$ion.

Guanidinium tetrabromidomercurate(II)

Crystal data

$\left(\mathrm{C}_{1} \mathrm{H}_{6} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{HgBr}_{4}\right]$
$M_{r}=640.41$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=10.035$ (2) \AA
$b=11.164$ (2) \AA
$c=13.358(3) \AA$
$\beta=111.67$ (3) ${ }^{\circ}$
$V=1390.7(6) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-I diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298 \mathrm{~K}$
imaging plate dynamic profile intergration scans
Absorption correction: none
9651 measured reflections
1361 independent reflections
$F_{000}=1144$
$D_{\mathrm{x}}=3.059 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: not measured K
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 2000 reflections
$\theta=2.9-26.1^{\circ}$
$\mu=22.53 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Cylindric, colourless transparent
$0.09 \times 0.09 \times 0.09 \mathrm{~mm}$

> 982 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.093$
> $\theta_{\max }=26.1^{\circ}$
> $\theta_{\min }=2.9^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-13 \rightarrow 13$
> $l=-16 \rightarrow 16$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.069$
$S=0.90$
1361 reflections
79 parameters
6 restraints
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0376 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.03$ e \AA^{-3}
Extinction correction: SHELXL93 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00077 (10)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Hg 1	0.5000	$0.71191(4)$	0.2500	$0.0577(2)$
Br 1	$0.30789(8)$	$0.86270(7)$	$0.27353(7)$	$0.0555(2)$
Br 2	$0.38905(10)$	$0.60032(7)$	$0.07086(6)$	$0.0635(3)$
C 1	$0.4454(8)$	$0.8215(6)$	$0.6018(6)$	$0.0492(18)$
N 1	$0.5515(10)$	$0.8736(7)$	$0.5829(6)$	$0.070(2)$
H 1 A	$0.592(10)$	$0.818(7)$	$0.558(8)$	0.084^{*}
H 1 B	$0.549(10)$	$0.950(2)$	$0.594(8)$	0.084^{*}
N 2	$0.4254(7)$	$0.7072(6)$	$0.5904(6)$	$0.0625(17)$
H 2 A	$0.363(7)$	$0.673(8)$	$0.612(7)$	0.075^{*}
H 2 B	$0.485(8)$	$0.665(7)$	$0.571(7)$	0.075^{*}
N3	$0.3560(9)$	$0.8857(7)$	$0.6335(7)$	$0.075(2)$
H3A	$0.369(11)$	$0.960(3)$	$0.622(8)$	0.090^{*}
H3B	$0.278(7)$	$0.856(9)$	$0.636(9)$	0.090^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0706(3)$	$0.0544(3)$	$0.0586(3)$	0.000	$0.0359(2)$	0.000
Br 1	$0.0569(4)$	$0.0485(4)$	$0.0714(5)$	$-0.0003(3)$	$0.0359(4)$	$-0.0070(4)$
Br 2	$0.0950(6)$	$0.0453(5)$	$0.0638(5)$	$-0.0062(4)$	$0.0454(5)$	$-0.0100(4)$
C 1	$0.051(4)$	$0.043(4)$	$0.043(4)$	$0.005(3)$	$0.005(3)$	$-0.006(3)$
N 1	$0.090(5)$	$0.054(4)$	$0.064(5)$	$-0.021(4)$	$0.026(4)$	$-0.001(4)$
N 2	$0.058(4)$	$0.052(4)$	$0.081(5)$	$-0.005(3)$	$0.030(4)$	$-0.011(4)$

N 3	$0.081(5)$	$0.063(5)$	$0.073(5)$	$0.011(5)$	$0.018(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

Hg1-Br2	2.5593 (10)	N1-H1A	0.87 (9)
$\mathrm{Hg} 1-\mathrm{Br} 2^{\mathrm{i}}$	2.5593 (10)	N1-H1B	0.87 (9)
$\mathrm{Hg} 1-\mathrm{Br} 1$	2.6639 (9)	N 2 - H 2 A	0.87 (9)
$\mathrm{Hg} 1-\mathrm{Br} 1^{\text {i }}$	2.6639 (9)	N2-H2B	0.87 (9)
C1-N2	1.293 (10)	N3-H3A	0.87 (9)
C1-N1	1.316 (11)	N3-H3B	0.87 (9)
C1-N3	1.334 (11)		
$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br}^{2}{ }^{\text {i }}$	121.74 (4)	C1-N1-H1A	107 (7)
$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br} 1$	109.51 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109 (7)
$\mathrm{Br} 2{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{Br} 1$	106.33 (3)	H1A-N1-H1B	144 (10)
$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br} 1^{\text {i }}$	106.33 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120 (6)
$\mathrm{Br} 2^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{Br} 1^{\mathrm{i}}$	109.51 (4)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	118 (7)
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br}^{1}{ }^{\text {i }}$	101.62 (4)	H2A-N2-H2B	121 (9)
N2-C1-N1	121.0 (8)	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	107 (8)
N2-C1-N3	118.3 (8)	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	122 (8)
N1-C1-N3	120.7 (7)	H3A-N3-H3B	125 (10)

Symmetry codes: (i) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{i}}$	$0.87(9)$	$3.03(4)$	$3.845(8)$	$158(9)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{ii}}$	$0.87(9)$	$2.77(6)$	$3.512(7)$	$144(8)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Br} 1^{\mathrm{iii}}$	$0.87(9)$	$2.72(4)$	$3.541(7)$	$159(8)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Br} 2^{\mathrm{i}}$	$0.87(9)$	$2.74(4)$	$3.535(7)$	$153(8)$
$\mathrm{N} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{iv}}$	$0.87(9)$	$3.05(10)$	$3.505(8)$	$115(8)$
$\mathrm{N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{iiii}}$	$0.87(9)$	$2.98(8)$	$3.667(9)$	$137(9)$

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $-x+1,-y+2,-z+1$; (iii) $-x+1 / 2,-y+3 / 2,-z+1$; (iv) $x,-y+2, z+1 / 2$.

Fig. 1

Fig. 2

Fig. 3

